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Abstract. A simplc way 1o determine the parameters of Rossler’s system based
on a suitable output (y-variable) is presented in this paper. The fact that the
nonlincar system is observable and algebraically identifiable. with respect to the
sclected output, allows us 1o propose. in a first stage, a high-gain obscrver to
estimatc the output's time derivatives. And then, based on these facts two
suitable schemes to recover the parameters are presented.
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1 Introduction

Reconstruction of chaotic attractors, from one or more available variables, is an
interesting and challenging problem, which has attracted the attention of many
researchers because of its theoretical and practical importance (see [Baker et al.,
2001], [Broomhead & King, 1986}, [(Gibson et al., 1992}, [Poznyak et al., 1999],
[Lainscsek & Gorodnitsky, 1996] and [Crutchfield & McNamara, 1987]). The
objective is to find an inverse of mathematical or empirical models; that is, extract,
from a partial knowledge of these models, the underlying dynamics ([Parlitz, 1995}).
This problem is important: first, experimentally, in general it is not possible to
measure or observe the complete state of a given system, or in some cases only a few
physical parameters are available (see [Stojanovski et al., 1996]); second, it allows us
to verify the accuracy of some empirically derived models (see [Lainscsek &
Gorodnitsky, 1996]); and third, to verify how secure a communication system is when
the encoding system is chaotic (see [Stojanovski et al., 1996), {Parlitz er al.,1994] and
[Kocarev et al., 1992]). Roughly speaking, the problem has been solved in two ways.
The first approach has been, so far, dominated by the delay embedding methodology
founded on the delay reconstruction of states known from non-linear time series
analysis (for general background on this fascinating area, the reader is referred to the
easily readable books [Alligood et al., 1997] and [Hand & Berthold, 2002]). Also, we
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recommend reading the papers ([Sauer er al.,1991]. [Takens, 1981]. [Tokuda et al.,
2002]. [Stojanovski ef al.. 1996], [Parlitz er al.. 1994]. [Broomhead & King, 1986]
and [Hand & Berthold, 2002] ). The other approach is based on control theoretical
ideas. such as inverse system design and system identification, as devices to recover
parameters and unknown or difficult-to-measure states ([Feldmann et al., 1996],
[Poznyak er al., 1999], [Poznyak et al., 1998] , [Cheng & Dong, 1995] and [Suarez e/
al., 2003)).

In this paper, we deal with the problem of recovering Rossler's parameters by means
of the knowledge of an available output (which is the y — variable of the well-known

Rossler's model ). The on-line identification approach is based on the algebraic
properties of observability and identifiability that Rossler's model satisfies. Those
properties allow us to find a differential parameterization of the output and a finite
number of its time derivatives. This parameterization is used in two identification
approaches: in the first we use a traditionally least-square method which is solved by
an ad-hoc genetic algorithm (GA). In the second approach, we assume that a specific
parameter is given, then an algebraic on-line parametric identification can be
formulated. Although the two approaches require the non-available output's time
derivatives (from 1* to 3 ) this inconvenient is overcome by using a practical high-
gain observer (HGO), which works, as known, like an approximate differentiatior
(see [Parlitz, 1995]). The HGO is not based on the Luenberger observers, since it
does not require an accurate model.

The remainder of this paper is organized as follows. Section 2 is devoted to studying
some important algebraic properties of the Rdssler’s system. In Section 3, we
introduce a simple HGO for estimating the time output derivatives; next, we develop
two identification procedures based on the previously introduced algebraic properties.
In the observer design and in the two identification schemes, we present computer
simulation results depicting their performance. Section 4 is dedicated to giving the
conclusions. Finally, in the Appendix we give a brief survey of GA and also present
proofs of Propositions | and 2.

2 Rossler's System Properties

We consider the popular nonlinear Rdssler's System (RS) , which is described by

t=-(y+2z) (1)
y=x+ay
t=b+:(x-c)

It is well known that in a large neighborhood of {a=b =0.2.c=5} this system

presents a chaotic behavior and is considered for exhibiting the simplest possible
strange attractor ( [Strogatz, 1994]). Originally, the RS, which is credited to Otto
Rossler, arose from work in chemical kinetics ([R6ssler, 1976)).

The fundamentals of this work are based on the algebraic properties of observability
and identifiability that the RS satisfies (see [Martinez & Diop, 2004] and [Martinez &
Mendoza, 2003]). The definitions of these are as follow.
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Definition I: Let us consider an undetermined system of ordinary differential
equations

G(, X, X, P)=0, (2)

" . ) .
where  x7 ={x,...x,}e R" is a state vector and P = {prop}eR is a

constant parameter vector. Suppose that there exists a smooth, local and one to one
correspondence between solution X @ of system (2) and an arbitrary function

y(@ = h@. XQ)e R.then . state x, is said to be algebraically observable with respect
to y(!) , if it satisfies the following algebraic relationship.

=) 3)
- S ("' """ y L0 ym <5 with coefficients in R
8 ey} P)

where f,.g, and h are smooth maps, y(k) is the k* derivative of y and |, m are
integers. Variable y is the output. If x, is observable for every i=|\,......n, then we
say that the system is completely observable

Definition 2: Consider again system (2) under the same conditions of Definition 1.
If we can find a smooth mapW : R’ = R’ such that

0=w(,y,.y()Pr) (4)

then, the parameter vector P is said to be algebraically identifiable with respect (o
the selected oniput

Next, we verify that RS satisfies the previous definitions when the output is
selected as y. Evidently, this system is found to be algebraically observable with

respect to the defined output. To see it, variables x andz can be expressed in the
following

x=y-ay ; z=-y+ap-y ()

From |z we can obtain y®

Y9 = b+ G s y)i—ay =)o -5 ©

Therefore, system (1) is identifiable with respect to the output y because the last
differential parameterization can be rewritten as,

0=W.5 5,92, P) with P=[a,b,c] (7)
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3 States Estimation and Parameters Identification

Since RS is obscrvable and identifiable, then a HGO is proposed to estimate the time
derivatives. from the 1* to the 3", of the output. Morcover, it is possible to implement
an identification scheme to recover the unknown vector P see [Martinez & Diop,
2004)). So, this section is devoted to solving both problems. Firstly, a HGO is
proposed to tackle the time derivatives estimation problem. Then, using the observer's
estimation of the derivatives, an identification process can be carried out. Finally, we
suggest two alternatives for identitying vector P i) a traditionally lcast-square
method and. i) an algebraic on-line approach.
Before establishing the estimation and identification problems, the necessary

assumptions are presented.,

Al The states of the nonlincar system (1) oscillate around zero. A2 The set of

variablesV = {'(!,, )..,y(')(rJl )}are available t, € 3=, .ty Ay ). with a sampling
time t selected such that

T=t,, -1, j=4§2..n-1} (8)
Notice that A2 will be relaxed by means of an HGO, that is, we estimate with high

accuracy the set V. Finally, we mention that although the RS identification has been

considered by other authors such as [Baker er al, 1996]) and [Lainscsck &
Gorodnitsky, 1996), they did not use the differential algebraic approach as we did.

3.1 A simple HGO

Bascd on the previous worksof (sce [Dabroom & Khalil, 1999]) and, Bonilla we
propose the following HGO.

Let us define vector V' [y ¥ ji.yw]and let us propose the following filter given
by:

¥ = AV + HC - V) o
Where, A is the well-known Brunovsky form
aQ a, a, a (0
H'=|— 2+ L 2 Cc=[l 0 00
2 s s slepooq

¢ is a small positive parameter and the positive constants a, are selccted such that
the polynomial defined as:

p(s)=s' +a,s’ +a,s? +a,s+a,, (an

is Hurwitz (see [Dabroom & Khalil, 1999] for more details).
The following proposition allows us to compute the erroré =Y — Y.

Proposition 1: Consider the system (1) under assumptions Al. Then, the HGO
propused in (9) is able to recover Y with bounded error
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ElsBre/a’ %)
Where N is given by

A" = minRefroors(p(s )], (13)

B is a positive constant which depends on the initial conditions &(Q). and

aa s ym(’j- Proof: The proof is in the Appendix.

Notice that constants € and A* are design parameters which can be chosen in order
to minimize the error of observation.

3.1.1 Numerical Simulations The efficicncy of the HGO had been tested by computer
simulations. The experiments were implemented by using the 4"-order Runge-Kutta
algorithm. The computation was performed with a precision of 8decimal digit
numbers, from ¢ = 0sccond to ¢ =10scconds. To obtain a good performance, the step
size in the numerical method was set to 0.0005. The RS parameter values were set as

a=025,b=02and ¢=42, and the initial conditions were set as
x(O):-I.)’(O):lnnd 2(0)=0. The polynomial was chosen to

be p(s)= G’ +2£;m,s+m,,2) , With § =0.0707 and o, =0.9 The gain of the HGO
was selected as € =0.005.,

Figure | shows the error cvolution of each output's time derivatives. As can be
seen a very good eslimation of y“’.k = ﬂ.2.3}is oblained.

3.2 Parameters Identification Based on Least-Squares

Under assumptions Al and A2 a common quadratic function for estimating vector P
from the differential relation (6) is presented as:

sE)=min 3 GV¢,0 p)-59¢,) s with 1, €3 14
L 0

where, symbol "}m(,. p) denotes the parametric estimator of the 3" time
derivative of y given by

79, p)= -5+ €0~ 50+ YORD- £0y0- £, ) £ 50O-50 U9

with P"'[Po»Pan]e R’
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Notice that if we try to compute the critical points of relation (14), we need to
solve three highly difficult nonlinear parametric equations with respect 1o parameters
4. b.c}. That is, obtaining analytically Rissler’s parameter values is not possible if
solely output yis available. Nevertheless, it is feasible to obtain an algebraic
expression for parameters a,band ¢ as long as the Rdssler’s states x, yand = can
be measured [G.L. Baker et al. .1996 ). To overcome these ditficulties, we instead
use a common GA to compute vector p which minimizes expression (). This method

is ad-hoc, because, we avoid the necessity of computing derivatives with respect to
parameters and of finding the roots of the nonlinear parametric function, and we avoid
the possibility of falling into a local minimum (sce {Golberg, 1989], [Mitchel, 1998]
and [Back er al., 2000)). Finally, we recommend reading a brief description of the
GA given in the Appendix in order to understand and to interpret the following
numcrical simulations.

3.2.1 GA Numerical Simulations To evaluate the cfficiency of the proposed
identifier method based on GA, a second computer simulation was carricd out
Basically, we estimate numerically vector p such that expression (14) is minimized
by means of a GA . The sampling time was sclected 1 = 0.1, the number of samples
was set to N =25, the cost was selected a =107° The samples were taken in the
time interval from 6.5 to 9 scconds. Components of veclor p= [p,.p,'p,] were

scarched for in a region centred on B = [0,0,0] with radius 7.

Figurc 2 shows the process of error minimization. It can be seen that the crror tends to
zero when the generation number increases. Therefore, the actual and estimated
parameters are very close, as shown in Table 1.

Generation A B c (16)
1 0.1789 0.0221 2.6051
3 0.1952 03112 4.3115
10 0.2108 0.1624 3.989
32 0.2389 0.2005 4.1167
100 0.2498 0.1999 4.2010

Table 1.Best individual of some generations

3.3 Identification by solving algebraic linear equations

In this scction we relax the identification problem a little in order to obtain an casier
solution. Assuming that parameter a is known and the set V is available, it is
possiblc to obtain a straightforward solution bascd on simple lincar algebra.

Consider again the differential parameterization (6). This produces, after further
time evaluation, the following system of lincar cquation for the missing parameters,
b and c.
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I R ey

where o, Oand ®, () are defined as:

0,6)= 56)- a6 )+ ¥6) (18)
@1 = YO} 56)- -0, 6Y56)- 26)

The linear equation (17) allows us to recover the unknown parameters, b and ¢, after
some time 1, >0, that is to say, at =/, +1 ,t >0, for which the matrix in () is
invertible. As we mention in the following proposition:

Proposition 2: Under assumptions Al the matrix (17) becomes invertible for almost
t, >0and t >0. Proof (Refer to Appendix).

Another possibility to estimate the missing parameters can be done assuming that
4™ derivative is available. Now, computing the time derivative of equation (6), this
yiclds:

¥ -a+j-G-ay+ yXi-ay)- (G -ay+ yXy-ay-c)=0 (19

Evidently, from equations (6) and (19) we can obtain directly the parameters b and ¢,
respectively.

3.3.1 Numerical Simulations We illustrate the cffectiveness of the previously
described identification method by using inverse matrix. The initial conditions and the
physical parameters were taken as indicated in the previous experiment, except for an
abrupt change in the Réssler’s parameter values b and ¢, from 0.2 to 0.35 and 4.2 to0
3.5 when 1t 25, respectively.

Figure 3 shows the estimation of parameters band € based on inverse matrix. As a
result, the identification process is quite robust with respect to abrupt parameter
variations.

4 Conclusions

The differential algebraic approach allowed us to solve the identification problem for
the well-known Rossler’s attractor. In this instance, we exploited the algebraic
propertics of observability and identifiability that Russler’s model fulfils, with respect
to a very particular available state which is the y- variable. Therefore, we could

obtain a differcntial parameterization of the output and its time derivatives. Based on
these facts, an HGO was used for estimating the output's time derivatives, and then,
two identification approaches were designed based on the previously
paramcterization.
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The identification approaches were tested by means of numerical experiments. In
the first one, a traditionally least-square method was used and solved by a suitable
GA. as shown in Table 1; in the second one, the missing parameters were computed
in a straightforward way as an inverse matrix. The performance of the inverse matrix

was validated in the presence of an abrupt variation in the missing paramelers, as
shown in figures 2 and 3.
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S Appendix

A Brief Look at GA (we recommend reading [Bender & Orzag, 1999])
We introduce a traditional GA to minimize expression (14):

(i) Individuals in the GA are vectors (in R ) of the form

q, = E’o,: 1915292, ] (20)

It is understood that the GA is a real-coded one (as opposed to a binary-coded
onc).

(ii) Every population consists of 500 individuals.
(iii) The best individual, g, (evidently ranked 1), in gencration PJ is passcd on 10

generation P“ , » with no change.

(iv) Several steps are involved in the creation of generation P, . They are as
follows: i ) selcction; /i) crossover; ifi) mutation.

i ) The upper half of P) passes on to population P.m while the lower half is
discarded. Note that P« holds just the best250 individuals in P,

if) To accomplish crossover couples, parcnts arc gencrated as follows: each
individual in P ;.1 is assigned a probability which is calculated lincarly according to
its ranking. Sclection of individuals is madec by generating random numbers
in [0,]](5ay @, ) and comparing them to the accumulated probability ,Ap(g, ), of

cach individual. Individual g, is selccted 1o be part of P'js1 when @, < Ap(q, ) In

a first round a member of each couple is selected while in a second round the other
member is selected. The crossover algorithm used in this GA is a slight modification
of the flut crossover (or arithmetic crossover) opcerator. An  “oftspring”
h= [hu,hl,hz, is generated as

h =Bg,, +(1+BN..- (20)

from “parents”
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ql = Elo.vql,n‘h.ll (g2 = Bo.zquz"h,z] (22)

where g, is a better individual than g, (i.e g, makes the error function smaller

than g, does)and B is a random number choscn uniformly from the interval [0.5, 1].
This interval is used in order to weigh as more “influential” the information carried by

the best of the parents. This process is repeated until a set P, with 250 “"offspring"
is completed. A new population is then created: P ;l = P;"ﬂ U P;ﬂ ;
(iit) The mutation algorithm consists of randomly changing a component of 15% of

the individuals of P;’,l . Changes are made within the vicinities specified below. This

is the final step in creating generation P,

(v) The cost of each individual was computed via S(N.‘r) where N is the

number of samples and T is a sampling time. The algorithm stops when the best
individual tags a “cost™ named  , where @ is fixed as small as needed.

(vi) Components of vector g = [go,ql ,qz] were searched in a previously defined
“box™,; this means.

4,9, =s¢,.:i={.23} (23)

where g, is the selected centre and €, is the radius which can be chosen as large as
necded.

Proof of Proposition 1:

Evidently, vector ¥ can be written as:

P=AY+5,.; (24)

withd”, = D.0.0,y] Subiracting (24) from (9), we obtain the following
difTerential equation of the error:

E=[1-HCE +5,. (25)

Notice that the characteristic polynomial of A = A — HC is given by p(.\' e). wich
is also Hurtwitz. That is, the proposecd H assigns the cigenvalues of 4 atl € times
the roots of p(s‘) (11). Hence, the error € satisfies

' (26)
e@)=e""")e(0)+ Ie"(""')ﬁ,, (s)ds

y
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Since A is exponentially stable and the signal yo) is bounded, we also have the

following inequality:

" ¥ & - 27
E <Pe'tE +[3ns(—e" )k - PBne A . D

where the positives constants B ,A",M are previously defined in proposition 1.

Proof of Proposition 2:

Let A(r,,'r) be the determinate of matrix (17) which is given by

A(r, R 2 )= -, (!, K . )+ o, (t, ) From the definition of variable ®, O given in (18)
and taking into account system (17), we obtain after some simple algebra, the

following:

AQ,t)=-2(, +1)+ z(t,). (28)

Since the variable z(t) oscillates around zero, we must have
—z(!, +t)+ z(l,):tO for almost £, >0and T >0. As the matter of fact

—z(!, +‘t)+z(t;)=0 only in a finite set of time. T =§,,t1, ...... L

Therefore, matrix (17) is invertible for almost £, >0 and T > 0.
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